【2023】慶應義塾大学理工学部数学 難易度と傾向と対策:教科書+Focus Gold+確率、整数の補強

 

大学受験塾チーム番町 市ヶ谷駅66m 東大卒の塾長による個別指導

東大・医学部受験の数学の勉強法

東京工業大学数学

早稲田大学理工系数学

慶應義塾大学薬学部数学

早稲田大学・慶應大学 入試英語長文 出典を読んでしまおう!

 

【2023】慶應義塾大学理工学部数学 難易度と傾向と対策:教科書とFocus Goldで解く合格への道

 

慶應理工入試の数学で悩んでいる人へ

 慶應理工数学の難易度、また、どのような参考書をマスターすれば合格点を取れるかがわからずに、悩んでいませんか?
 実は、慶應理工の数学は、教科書の理解、基本問題とFocus Gold(啓林館)あたりの技法の組み合わせで、ほぼ合格点をとれます。(さすがに、少し、補強が必要です。)
 この記事を読むと、慶應理工数学の難易度(月刊『大学への数学』誌のものも併記してあります)、どのように勉強すれば合格点を取れるか、どこまで解ければいいのか、を知ることができます。

 

慶應理工入試における数学の重要性

 慶應理工の数学の配点は150/500です。全配点の1/3弱ということで、かなり配点が高いことがわかります。試験時間は120分です。
 また、数学は、大問が5つしかありません。他の受験生が解けている問題が、Focus Goldあたりに抜けがあることにより、白紙になり、0点だと、その失点を他科目で取り返すのは、かなり厳しいといえます。
 以上より、慶應理工入試における数学の重要性がわかると思います。

 

慶應理工数学、入試本番の心構え

 以下のことは、どこの大学の入試の数学でも、このような傾向があります。
 大学入試の数学は、物理、化学と異なり、大問ごとの難易度の波が激しいことが多いです。慶應理工でも、並の合格者程度では、まあ解けないだろう、という問題もよく出ます。特に、近年は全体として取り組みやすい問題が多かったものの、2023年の慶應理工は、下記のように、大問ごとに、難易度の波が非常に大きかったです。
 そのような時に、解けなそうな問題をみて、戦意を喪失しないことです。人間は、そのような心持ちになるだけで、パフォーマンスが低下することが、大学の研究で明らかになっています。ちゃんと勉強した受験生の場合、解けなそうな問題を見たら「他の受験生も解けないな」と思って、軽く流し、解けそうな問題を確実に解く、部分点を取る、ということを心がければ、合格点を取れます。

 

 

2023年慶應義塾大学理工学部 数学:難易度、どのくらい解ければ合格点?

 

 月刊『大学への数学』誌(東京書籍)では、難易度をA(易)~D(難)にレベル分けしています。Bが教科書の理解とチャート式、Focus Gold(啓林館)あたりの技法の組み合わせで完答でき、発想力といったものはいらない問題です。東大は成績を開示し、東大新聞は合格者の平均点を調査しています。Bを完答、CもBレベルの部分点で合格者平均を超えます。
 第三者の評価も加え客観性を持たせるために、この評価も併記します。
 大学受験塾チーム番町では、普通の塾、予備校のように、入試問題の解き方を解説しても、あまり意味はないと考えます。どのように勉強すれば、大学入試の数学で合格点を取れるのか。それを、正解に必要な技法が、教科書、チャート式、Focus Gold(啓林館)に載っているか、という独自の観点から分析します。

 

大問1


『大学への数学』誌の難易度はA。
数3の微積分の問題です。

(1)
関数を定義にしたがって微分して、微分係数を求める問題です。教科書に載っているので解けるはずですが、その後、公式で微分するようになると、疎かになりがちな問題なので、注意しましょう。

(2)
関数が微分可能でないことを示す問題です。これも、教科書に載っているので解けるはずですが、疎かになりがちな問題かと思います。
微分可能であるということは、ざっくりと言うと、接線の傾きを考えられる、微分係数が存在するということです。そして、微分係数は極限で定義されます。極限値が存在することは、右側極限と左側極限が一致して、その値であることです。このあたりの一連の話は、教科書に載っているのですが、自力で教科書で理解するのは、意外と難しいかもしれません。

(3)
問題文に「平均値の定理を用いて証明しなさい」とありますから、その通りにすれば、簡単に証明できます。ただし、平均値の定理も、疎かになりがちな分野だと思うので、注意しましょう。

 

大問2

『大学への数学』誌の難易度はC。

(1)
前半は、空間座標上の直線の成す角と台形の面積を求める問題です。
ベクトルと三角比を使って、愚直に(上底+下底)×高さ÷2を計算しに行けば求まります。
後半は、ACの長さを求める問題です。ベクトルの大きさに持ち込めば解けます。

(2)
(1)の台形が円に内接するの時のkの値を求める問題です。円に内接しますから、対角の和は180°で、そのような台形は等脚台形であることを使うと、解けます。

(3)
問題を読んで、図形的にわかってしまえば簡単なのですが、難易度Cがついているように、正確に題意を把握するのは難しいと思います。ただ、短答式なので、こんな感じかな、と答えを書いて、合っていた、という人はいたかもしれません。

 

大問3

『大学への数学』誌の難易度はD。
確率の問題です。
ただ、完答の難易度がDなのであって、小問集合なので、(2)までは絶対、(3)(コ)はなるべく、取りたいです。

(1)
前半は、4回の操作後に袋Aに3個以上入っている確率です。愚直に数え上げるだけで解けます。確率の問題は、常に、愚直に数え上げる、という選択肢を頭に入れておきましょう。
後半は、前半の状況を前提に、7回の操作後に袋Bが3個以下の条件付き確率です。当然、前半の結論は使えます。その後はやはり、愚直に推移図でも書いていけば解けます。
本問は、なんとなく、近年の慶應医の確率に雰囲気が似ているような気がします。

(2)
n回の操作後に袋Aに入っている数のほうが多い確率を求めます。
前半は、漸化式を立てろという誘導がついています。確率については「対称性」を使うと速い問題がたまにあります。本問はAが多いのとBが多いのは確率が同じですから、その「対称性」を使うと速く簡単です。対称性を使う問題は『合格る確率』(文英堂)あたりでマスターしましょう。その後、漸化式を解くのは教科書レベルなので解けます。

(3)
(コ)はn回の操作後にAにn-1個以上入っている確率です。この程度は『合格る確率』(文英堂)あたりをマスターしていれば、似たような流れの問題が載っているので、できると思います。
(サ)が本大問が難易度Dたるゆえんなのだと思います。言われればわかりますが、実戦的には、完答は難しいでしょう。

 

大問4

『大学への数学』誌の難易度はC。
全体としては数3の微積分の問題です。

(1)
不等式の証明です。
両辺の全体に絶対値がついていますから、両辺正であり、数2の教科書の「不等式の証明」に載っているように、2乗して証明しても行けます。また、微分のところにも不等式の証明があります。そのような方針でも行けます。

(2)
数学の入試問題において、上の小問は誘導ではないかと考えましょう。本問も(1)の式と全く同じ式が現れています。そして、このような極限は、まず、はさみうちですから、そう考えると、比較的簡単に示せると思います。

(3)
積分は、「この形はこう積分する」とぱっと見えなくてはなりません。Focus Goldには、Yes、No心理テストのような積分チャート図が載っています(笑)。そうすると、本問は、「分母の微分が分子」型だと気づき、簡単に解くことができます。

(4)
このあたりの積分漸化式は、基本形は、Focus Goldあたりには何問か載っています。すると、本問も、部分積分を実行すればいいのではないか、と思えれば、正解することも可能かと思います。このあたりから、少し難しいかと思います。

(5)
本問も(4)が誘導だろうと考えます。
加えて、Focus Goldの漸化式に、両辺に何かをかけると解けるようになる類型がありますが、本問も、(4)の式の両辺にかけて、bに1/2を代入すると、本問の与式が得られます。ただ、言われれば簡単ですが、実戦的に思いつくのは大変かと思います。

 

大問5

(1)
『大学への数学』誌の難易度はC。
複素数平面の問題です。
すること自体は、チャート式やFocus Goldに載っているような技法なのですが、計算が大変なので、完答は厳しいのだろうと思います。(チ)が正解できれば、まずまずなのではないでしょうか。

(2)
『大学への数学』誌の難易度はB。
パッと見た感じ、見慣れない問題ですが、問題文にしたがって進めていくと、チャート式やFocus Goldなどの「整数」に載っている問題と、ほぼ同じ解き方をすることになるので、解けます。

 

慶應大学理工系数学の傾向と対策と勉強法は?

 慶應大学理工学部の数学は、大問5問、試験時間120分。
 年度にもよりますが、「慶應大学理工学部」というブランドの割には、全体的に取り組みやすい問題が並ぶことが多いです。ただし、2023年は、『大学への数学』誌の難易度がACDCCBと、完答は厳しいだろう問題が大半でした。
 確率は、同じ「確率」の分野でも、「共通テストや、もう少し入りやすい国立大学で出題されるもの」と「上位国立大学で出題されるもの」は、かなり傾向が異なることが多いです。抽象的な文字nなどが含まれる、漸化式との融合問題になる、Σを使う、などです。後者は『合格る確率』(文英堂)あたりでマスターしましょう。2023年の確率は、両方の類型に慣れていると、最後の1問以外は正解できたかと思います。
 整数は、完答できていない受験生が多い年も多いので、なんとも言えませんが、取れるだけ部分点を取らなければなりません。市販でちょうどいい整数問題集が無いので、大学受験塾チーム番町では、ちょうど完答できなければならないレベルの技法を網羅した、対策整数問題集を渡しています。
 数3の微分積分はまず出ると思ったほうがいいと思います。Focus Gold数3の入試に出る技法の網羅度は、かなりのものです。の技法を完璧にし、まずはFocus Gold数3の本文の問題を全問解けるようにしましょう。

 2023年は、このような方針で、大問1完答、大問2(2)まで、大問3(3)(コ)まで、大問4(3)~(4)あたりまで、大問5(1)(チ)、(2)完答、が可能でした。他の受験生に十分差をつけることができたと思います。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

慶應理工系オススメ参考書、問題集

 一番の基礎は教科書です。教科書には定義、問題以前の説明、基本問題が一番しっかり載っています。まずは、教科書を理解し、本文の問題(章末除く)を全問解けるようにしましょう。
 次に、Focus Goldの慶應理工に重要な問題を全問解けるようにします。この時、指導者がいて、適切に問題を選んでくれるといいですね。ここまでで、進研記述模試、河合全統記述模試などの標準的な記述模試では、慶應理工レベルの成績になっているはずです。
 慶應理工対策としては『合格る確率』、整数対策、『理系数学良問のプラチカ1A2B』、あたりを合否を分けるレベルの問題は全問解けるようにしましょう。

 直前期に何をすべきかは人によって違います。上記のような教材をきっちりこなしきれた場合、今までこなした教材で、忘れていてできなそうな問題に✓をつけ、ひたすら復習し、弱点をつぶすのがいいと思います。
 現役生で、間に合うか間に合わないかわからない場合、とにかく、復習してマスターすることを重視して、微積分、確率などの頻出分野から優先順位をつけて、Focus Goldや過去問の月刊『大学への数学』誌のBランク問題に取り組むと、本番での対応力が向上するでしょう。

 

 

2019年慶應義塾大学理工学部 数学:難易度、どのくらい解ければ合格点?

 

大問1

(1)
『大学への数学』4月号の難易度はA。
前半は微分して増減表を書くだけです。
後半は、親切に「結果を用いて」と問題にありますし、このような、よくわからない極限は、だいたいはさみうちで示します。
完答すべきです。
(2)
『大学への数学』4月号の難易度はB。
複素数平面の問題です。
解き方はいろいろありそうですが、最終手段はa+biと置くことでしょうか。
完答すべきです。
(3)
『大学への数学』4月号の難易度はB。
ベクトルを含む関数の定積分の問題です。
(イ)は誘導で(ウ)で使います。
積分は、「この類型はこう積分する」というのがパッと見えることが大切です。
慶應理工に受かろうという人なら、ベクトルはベクトルで(アタリマエですが(笑))、ベクトルの大きさと内積はスカラー、というのはいいですね。
最後はベクトルの図形的意味を読み取ると、直観的に答えが出ます。
完答すべきです。

 

大問2

『大学への数学』4月号の難易度はB。
数Ⅱの微分の問題です。
3次関数ではなく、異なる2次関数をくっつけたところに、ちょっとだけ、ひねりがあります。
(1)
素直に極値をたすだけです。
(2)
接点を通り、他の点で曲線と接する直線の話は、むしろ文系ではよく出ると思います。
素直にそのように式を立てて解くだけです。
(3)
素直に2直線が直交する、という式を立てて解くだけです。
完答すべきです。

 

大問3

『大学への数学』4月号の難易度はC。
3つの連続する数を取り出したら終了するゲームの確率の問題です。
(コ)では、愚直に数え上げることが大切になります。
確率の問題を考えるとき、常に選択肢に入れておきましょう。
後半、nが出てきて抽象的になりますが、まずは具体的な数字でやってみることが大切だと思います。
確率の分野を根本から理解していて、入試標準問題演習をしていれば、完答に近いところまで狙えるのではないでしょうか。
大学受験の数学は、入試問題の丸覚えではなく、教科書の理解と『Focus Gold』(啓林館)などの問題集でマスターした技法を入試問題に対して臨機応変に使いこなすことが大切だと思われますが、確率は、問題の性質上、実際に入試レベルの問題に多く取り組む優先順位が高い分野だと思います。

 

大問4

『大学への数学』4月号の難易度はB。
曲線とx軸にはさまれた部分に作る面積最大の長方形の無限級数の問題です。
偏見かもしれませんが、慶應理工というよりは、早稲田理工っぽい問題ですね。
長方形ではないですが、似たような流れの無限級数の問題はFocus Gold(啓林館)あたりには載っています。
完答すべきです。

 

大問5

『大学への数学』4月号の難易度はC。
正四角錐の体積などの問題。
(1)で体積を求め、(2)で最大値を求め、(3)前半の題意を把握できれば、そのあたりまでは進めるでしょう。
かつ、その程度で十分だったと思います。

 

慶應義塾大学理工学部数学の傾向と対策と勉強法

 大問3の後半、大問5の最後以外は、教科書を理解し、チャート式や『Focus Gold』(啓林館)などで受験によく出る技法をマスターし、入試標準問題演習をすれば、完答できるような出題です。
それで他の受験生に十分に差をつけることが出来たでしょう

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

 

2018年 慶應義塾大学理工学部 数学:難易度、どのくらい解ければ合格点?

 

大問1

(1)
『今年の入試で合否を分けたこの1題』誌の難易度はA。
相反方程式の問題。

『Focus Gold』などにはまず載っています。
正解しましょう。

(2)
『今年の入試で合否を分けたこの1題』誌の難易度はB。
対称式を置き換えて、解と係数の関係から実数条件に帰着させるのは、入試標準問題集などではよくある話です。

その後の処理も理系なら大丈夫でしょう。
正解すべきです。

(3)
『今年の入試で合否を分けたこの1題』誌の難易度はB。
因数分解すると、見るからにωの形になるので、できるでしょう。
完答すべきです。

 

大問2

『今年の入試で合否を分けたこの1題』誌の難易度はC。
確率の問題。
難易度はCとなっていますが、標準レベルだと思います。
(5)では(等差)×(等比)の形の数列の和を処理しますが、これは教科書にも載っています。
大学受験の数学は、入試問題の丸覚えではなく、教科書の理解と『Focus Gold』(啓林館)などの問題集でマスターした技法を入試問題に対して臨機応変に使いこなすことが大切だと思われますが、確率は、問題の性質上、実際に入試レベルの問題に多く取り組む優先順位が高い分野だと思います。
完答したいです。

 

大問3

『今年の入試で合否を分けたこの1題』誌の難易度はC。
積分、漸化式、極限の融合問題。
(1)
これが半径1の四分円の面積を表すことは、数研出版の教科書には載っています。
また、数研出版の教科書では、その上に載っている問題が、この形をx=sinθと置換する定積分の問題です。
そうするとcosn+1θの定積分の形になり、部分積分から漸化式を導く話は、数研出版の教科書の「研究」の部分や『Focus Gold』(啓林館)には載っています。
(2)
(1)の漸化式をどう処理すればいいかは、『Focus Gold』の数Bの漸化式にも似たような筋が載っていますし、『Focus Gold』数Ⅲのtannθの定積分の例題の下の問題のsinnθの定積分の問題が、本大問に雰囲気がかなり似ています。
(3)
このあたりで極限を求める問題は、常にはさみうちを選択肢に入れておきましょう。
(2)で触れた『Focus Gold』の問題もはさみうちで極限を求める問題です。
(4)
親切に「以上の結果を用いると」とあるので、なんとか以上の結果を使えるように工夫したいです。
世間的には難易度Cなのかもしれませんが、大学受験塾チーム番町で使っている『Focus Gold』に載っている解法で完答できそうです。

 

大問4

『今年の入試で合否を分けたこの1題』誌の難易度はD。
空間ベクトルの問題。

(1)(2)
同一直線、平面上にあるから係数を足して1、ベクトルの大きさは2乗する、基本になるベクトルを決めて(終点-始点)で変形する、などは『Focus Gold』などにはまず載っています。
(3)
そこまで難しくないですし、四面体の体積を求める問題も『Focus Gold』などにはまず載っていますが、計算量が多く、実戦的には難しいでしょう。
(2)までできればいいのではないでしょうか。

 

大問5

『今年の入試で合否を分けたこの1題』誌の難易度はC。
(1)
(フ)はいわゆるアポロニウスの円の問題で、教科書の軌跡のところに載っています。
以下も相似をつかって解けると思います。
(2)
角θを含む媒介変数で表された曲線の長さは教科書に載っています。
(マ)ができればいいのではないでしょうか。

 

慶應義塾大学理工学部数学の傾向と対策と勉強法

 『今年の入試で合否を分けたこの1題』誌の難易度は(ABB)CCDCでした。
 2018年東大理系がBCBBDCで合格者の平均点は理Ⅰ70.1点、理Ⅱ52.3点(東京大学新聞調べ)だったことからすると、Bまでを完答、CDのBレベルまでの小問で部分点、くらいで、十分他の受験生に差をつけることができたと思われます。
 そのためには、教科書を理解して、『Focus Gold』(啓林館)あたりをマスターして、入試標準問題演習をすれば大丈夫です。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

この記事を書いた人

大学受験塾チーム番町代表。東大卒。
指導した塾生の進学先は、東大、京大、国立医学部など。
指導した塾生の大学卒業後の進路は、医師、国家公務員総合職(キャリア官僚)、研究者など。学会(日本解剖学会、セラミックス協会など)でアカデミックな賞を受賞した人も複数おります。
40人クラスの33位での入塾から、東大模試全国14位になった塾生もいました。

大学受験塾チーム番町 市ヶ谷駅66m 東大卒の塾長による個別指導

Twitter