【2023】筑波大学医学群数学 難易度と傾向と対策:教科書+Focus Goldが合格の鍵

 

大学受験塾チーム番町 市ヶ谷駅66m 東大卒の塾長が個別指導

東大・医学部受験の数学の勉強法

千葉大学医学部数学

 

【2023】筑波大学医学群数学 難易度と傾向と対策:教科書+Focus Goldが合格の鍵

 

筑波大学医学群入試の数学で悩んでいる人へ

 筑波大医学群数学の難易度、また、どのような参考書をマスターすれば合格点を取れるかがわからずに、悩んでいませんか?
 実は、筑波大医学群の数学は、教科書の理解、基本問題とFocus Gold(啓林館)あたりの技法の組み合わせで、ほぼ合格点をとれます。(さすがに、少し、補強が必要です。)
 この記事を読むと、筑波大医学群数学の難易度(月刊『大学への数学』誌のものも併記してあります)、どのように勉強すれば合格点を取れるか、どこまで解ければいいのか、を知ることができます。

 

筑波大学医学群入試における数学の重要性

 筑波大学医学群大学の数学の配点は、二次の数学だけなら、適性試験の500点を抜くと、300/900です。
 また、数学は、大問が4つしかありません。他の受験生が解けている問題が、Focus Goldあたりに抜けがあることにより、白紙になり、0点だと、その失点を他科目で取り返すのは、まず無理といえます。
 合格している人の何割かは、たまたま解ける問題が多く出て、運良く受かった人ですが、自分が確実に合格しようと思ったら、数学の点数のブレをなるべく少なくすることが、非常に大切だということがわかると思います。

 

筑波大医学群数学、入試本番の心構え

 以下のことは、どこの大学の入試の数学でも、このような傾向があります。
 筑波大医学群は、入学難易度のわりには、数学の問題が易しめです。なぜなら、全て、他学部と同じ問題を解くからです。したがって、かなりの高得点勝負になりますが、あまりプレッシャーに感じると、実力を発揮できないかもしれません。一方、たまに、完答は難しい問題も出題されます。
 仮に、多くの簡単な問題や、たまに出る難しい問題を見て、解けなそうな時、戦意を喪失しないことです。人間は、そのような心持ちになるだけで、パフォーマンスが低下することが、大学の研究で明らかになっています。簡単な問題の場合、落ち着けば、解けるかもしれません。難しい問題の場合、ちゃんと勉強した受験生の場合、解けなそうな問題を見たら「他の受験生も解けないな」と思って、軽く流し、解けそうな問題を確実に解く、部分点を取る、ということを心がければ、合格点を取れます。

 

筑波大学医学群数学、近年の傾向

 最初の大問3つは、文系との共通問題です。3問から2問選択します。教科書の理解とチャート式、Focus Gold(啓林館)などの技法のマスターで正解できることが多いです。後半の大問3つは、理系共通問題です。3問から2問選択します。ここも、標準レベルのことが多く、教科書の理解とチャート式、Focus Gold(啓林館)などの技法のマスターで正解できることが多いです。
 総合大学の国立医学部の特殊性として、他の学部と同じ問題を解く、ということがあります。筑波大医学群の場合、まさにそうです。したがって、題が易しめなので、かなりの高得点勝負になります。

 

2023年筑波大学医学群数学:難易度、どのくらい解けるか

 

 毎年発売される『合否を分けたこの1題』誌(東京出版)では、難易度をA(易)~D(難)にレベル分けしています。Bが教科書の理解とチャート式、Focus Gold(啓林館)あたりの技法の組み合わせで完答でき、発想力といったものはいらない問題です。東大は成績を開示し、東大新聞は合格者の平均点を調査しています。Bを完答、CもBレベルの部分点で合格者平均を超えます。
 第三者の評価も加え客観性を持たせるために、この評価も併記します。
 大学受験塾チーム番町では、普通の塾、予備校のように、入試問題の解き方を解説しても、あまり意味はないと考えます。どのように勉強すれば、大学入試の数学で合格点を取れるのか。それを、正解に必要な技法が、教科書、チャート式、Focus Gold(啓林館)に載っているか、という独自の観点から分析します。

 

大問1

大問1~3から、2題の選択です。

『合否を分けたこの1題』誌(東京出版)の難易度はB。
数2の微分、3次関数の問題です。

(1)
三次関数の接線の、接点以外との交点を求める有名問題です。有名だし簡単なので、解けます。連立した時に、接点のx座標を重解に持つことを理解していると、より見通しがいいです。また、記述式なので検算程度にしか使えませんが、変曲点のx座標は、接点のx座標と交点x座標を1:2に内分する、という事実があります。

(2)
(1)の2点と三次関数上の点Pが作る三角形の面積を求める問題です。類題は、Focus Goldあたりの図形と方程式に載っています。点と直線の距離を使って三角形の高さを求めます。したがって解けます。

(3)
(2)の三角形の面積の最大値を求める問題です。(2)が二次関数の形なので、教科書レベルと言え、解けます。

 

大問2

『合否を分けたこの1題』誌(東京出版)の難易度はB。
二次関数、数2の積分あたりの問題です。

(1)
二次関数に絶対値がついていて、文字も多いので、きつそうな気がしますが、交点を求めるので、連立すると、意外となんとかなり、解けます。

(2)
数2レベルの積分をして面積を求めるだけなので解けます。

(3)
不等式の証明なので、セオリー通り、差を取るのはいいでしょう。すると、いかにも、相加相乗平均の形になるので解けます。理系なら微分も選択肢に入るかもしれませんが、文系との共通問題であることに注意。本問は相加相乗平均の不等式の等号が成り立たないのですが、示す不等式に等号がないので、ちょうどいい、という流れになります。

 

大問3

『合否を分けたこの1題』誌(東京出版)の難易度はB。
空間ベクトルの問題です。

(1)
Gは三角形ABCの重心であることと、与式を使えば、すぐに解けます。

(2)
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca の展開公式が頭に浮かぶか、また、ベクトルでFocus Goldあたりには載っている、1項だけ移行して、大きさを取って2乗する、という技法で解けます。

(3)
本問も、Focus Goldあたりや共通テスト対策をしていれば、本問で原点としてふさわしい点Oを中心に(終点)ー(始点)の有名な変形をするだろう、ということはいいと思います。最後の図形的考察も、Focus Goldあたりをこなしていれば出てくるので、解けます。

 

大問4

大問4~6から、2題の選択です。

『合否を分けたこの1題』誌(東京出版)の難易度はB。
数3の積分の問題です。

(1)
定積分の値を求める問題です。積分区間が-πからπまでなので、偶関数、奇関数を調べるのではないかと考えます。結果、奇関数なので、答は0です。このあたり、Focus Goldには、やや複雑な問題も載っているので、解けます。

(2)
不等式の証明ですから、セオリー通り、左辺から右辺を引いてみます。そうすると、比較的簡単に証明できると思います。

(3)
回転体の体積に関する不等式の証明の問題です。愚直に回転体の体積を出してみると、(2)の形が出てくるので、使うのではないかと考えます。あとは、丁寧に定積分の計算をすると、問題文の式が出てくるので証明できます。ただ、本文は、等号条件の検討が必要で、そこが少し難しい、忘れやすい、かもしれません。

 

大問5

『合否を分けたこの1題』誌(東京出版)の難易度はB。
数3の微積分、極限あたりの問題です。

(1)
教科書にも載っている、微積分学の基本定理の式の、上端と下端にxと定数(数2レベル)ではなく、関数が入る(数3レベル)問題なので、解けます。

(2)
g(t)を最小にするtの値がただひとつ存在し、そのtをhで表す問題です。g'(t)は(1)で求めています。t>0も考慮し、増減表を書くと、解けます。式はやや複雑ですが、やっていることは教科書レベルと言えます。

(3)
極限値を求める問題です。eを含み、微分の定義を使う極限の問題は、わりとあります。本文もそれで解けます。

 

大問6

『合否を分けたこの1題』誌(東京出版)の難易度はB。
複素数平面の問題です。

(1)
教科書にも載っている軌跡の問題なので解けます

(2)
軌跡の問題です。与式を見ると移項して因数分解できることがわかります。すると、数2の図形と方程式あたりを勉強していると、図形が2つあるということがわかります。一方は(1)の図形です。もう一方も、(1)と同様の、教科書レベルの軌跡の問題なので、解けます。

(3)
w=1/zと変換する軌跡の問題ですが、これも教科書に載っているので、同じようにやれば解けます。本問の特殊性は、図形が2つあることですが、特に難しくないでしょう。

 

筑波大医学群数学の勉強法と傾向と対策

 筑波大医学群の数学は、大問4問。前半2問は数学1A2Bからの出題で、3問から2問選択します。文系との共通問題で、二次関数、微積分などが出題されます。後半2問は数学3からの出題で、大問4、5は微積分、極限がよく出題される傾向にあります。大問6は近年、複素数平面で固定です。他の理系学部と共通問題です。

 くり返しますが、全問、他学部との共通問題なので、難易度は標準的です。教科書の理解とチャート式、Focus Gold(啓林館)などの技法をマスターし、少し入試問題に慣れれば正解できる場合が多く、そして、それで、他の受験生に十分に差をつけることができます。

 2023年の難易度はBBBBBでした。上記のように、教科書を理解し、チャート式や『Focus Gold』(啓林館)などで受験によく出る技法をマスターし、入試標準問題演習をすれば、満点も可能で、他の受験生に十分差をつけることができたでしょう。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

筑波大医学群数学のオススメ参考書

 一番の基礎は教科書です。教科書には定義、問題以前の説明、基本問題が一番しっかり載っています。まずは、教科書を理解し、本文の問題(章末除く)を全問解けるようにしましょう。

 次に、Focus Goldの筑波大医学群に重要な問題を全問解けるようにします。この時、指導者がいて、適切に問題を選んでくれるといいですね。ここまでで、進研記述模試、河合全統記述模試などの標準的な記述模試では、筑波大医学群レベルの成績になっているはずです。

 筑波大医学群対策としては『理系数学良問のプラチカ1A2B』(河合出版、文系プラチカより難易度は下です)、『年度別入試問題集』(数研出版)の理系1A2B、3の*問題(頻出標準問題)『、世界一わかりやすい阪大理系数学』(KADOKAWA、解説が詳しい)あたりをこなすと、Focus Goldでマスターした技法を、筑波大医学群入試で使いこなすことができるようになり、年度によっては満点近く取れるようになると思います。

 直前期に何をすべきかは人によって違います。上記のような教材をきっちりこなしきれた場合、今までこなした教材で、忘れていてできなそうな問題に✓をつけ、ひたすら復習し、弱点をつぶすのがいいと思います。
 現役生で、間に合うか間に合わないかわからない場合、とにかく、復習してマスターすることを重視して、数3の微積分、二次関数などの頻出分野から優先順位をつけて、Focus Goldや過去問の月刊『大学への数学』誌のBランク問題に取り組むと、本番での対応力が向上するでしょう。

 

 

2022年筑波大学医学群数学:難易度、どのくらい解けるか

 

大問1

大問1~3から、2題の選択です。

『合否を分けたこの1題』誌(東京出版)の難易度はB。
2次関数、図形と方程式、微分あたりの問題です。

(1)
円と放物線の共通接線の方程式を求める問題です。円の半径はすぐわかり、接点は与えられているので、教科書の円の接線の公式を使えば解けます。

(2)
問題文を読んで、まだ使っていない、放物線の軸の条件や、放物線から見た接線の傾きの条件を使うと解けます。

(3)
三角形の面積の最小値を求める問題です。愚直に求めに行くと、分数式になりますが、文系との共通問題であることも考え、相加相乗平均の関係を使えるように変形できるのではないかと考えます。似たような問題はFocus Goldあたりには載っています。それで解けます。

 

大問2

『合否を分けたこの1題』誌(東京出版)の難易度はB。
確率漸化式の問題です。

(1)
ごくごく簡単な確率の問題なので解けます。

(2)
本問も、数研出版の教科書に載っているレベルの確率漸化式の問題と言え、解けます。

(3)
教科書の常用対数のところに載っているような不等式との融合問題です。漸化式を解くのも不等式を解くのも教科書レベルと言え、解けます。

 

大問3

『合否を分けたこの1題』誌(東京出版)の難易度はB。
ベクトルで平行四辺形を考える問題です。

(1)
普通に、問われているベクトルを問題文で使われている文字、ベクトルで表せば解けます。

(2)
平行四辺形になるように第4の頂点を求める問題は教科書に載っています。「1組の対辺が平行で長さが等しい」を、「ベクトルが等しい」と考えるのですね。本問もそれで示せます。

(3)
ベクトルが平行になるようにtの値を定める問題です。一方のADベクトルはbベクトルです。愚直にもう一方のA3B3ベクトルをaベクトルとbベクトルで表しに行きます。教科書に載っている平行条件、実数倍と書けることから、aベクトルの係数は0ですから、それでtの値が定まり、解けます。

 

大問4

『合否を分けたこの1題』誌(東京出版)の難易度はB。
微分、積分あたりの問題です。

(1)
問題文の2曲線がちょうど2つの共有点を持つように、aの値を定める問題です。
見た感じ、定数aを分離する、教科書にも載っている解法が思い浮かびます。この時、連立してaを分離した式のaでない方が偶関数になっていることに気づけば、少し早く解けます。

また、cos2x=tと置き換えて、2次方程式の解の配置の問題に帰着させる解法もあります。こちらはFocus Goldあたりには載っているので、やはり解けます。

(2)
問題文の2曲線が囲む面積を求める問題です。普通に、上下関係を考え、共有点を求め、積分すれば解けます。定積分も教科書レベルと言えます。

 

大問5

『合否を分けたこの1題』誌(東京出版)の難易度はB。
微分の問題です。

(1)
愚直に法線の方程式、点Qの座標を求め、QRの長さ(両点ともx軸上)を求めれば解けます。

(2)
大問5の問題文とは関係のない、まずFocus Goldあたりの微分のところには載っている不等式の証明の問題なので、解けます。この時点で、おそらく(3)で使うのだと考えましょう。

(3)
(1)のQRの長さの最大値を求める問題です。絶対値を外し、微分して、増減表を書きます。この時、どちらの極大値で最大値を取るのかがよくわからないのですが、ここで(2)の不等式を使うと考えます。それで解けます。

 

大問6

『合否を分けたこの1題』誌(東京出版)の難易度はB。
複素数平面の問題です。

(1)
複素数平面には、いくつか、よく使う技法があります。
そのうちの1つにその複素数をa+biと置く、というものがあります。
本文もそう置いて、分母を実数化するという自然な計算をすれば、簡単に示せます。

 

 

 

 

 

この記事を書いた人

大学受験塾チーム番町代表。東大卒。
指導した塾生の進学先は、東大、京大、国立医学部など。
指導した塾生の大学卒業後の進路は、医師、国家公務員総合職(キャリア官僚)、研究者など。学会(日本解剖学会、セラミックス協会など)でアカデミックな賞を受賞した人も複数おります。
40人クラスの33位での入塾から、東大模試全国14位になった塾生もいました。

 

Twitter