【2024】東北大学数学(医学部・理系) 難易度と傾向と対策:教科書+Focus Goldで合格へ

 

【2024】東北大学数学(医学部・理系) 難易度と傾向と対策:教科書+Focus Goldで合格へ

 

大学受験塾チーム番町 市ヶ谷駅66m 東大卒の塾長が個別指導

 

東北大学入試の数学で悩んでいる人へ

 東北大学数学の難易度、また、どのような参考書をマスターすれば合格点を取れるかがわからずに、悩んでいませんか?
 実は、東北大学の数学は、教科書の理解、基本問題とFocus Gold(啓林館)あたりの技法の組み合わせで、ほぼ合格点をとれます。(さすがに、少し、補強が必要です。)
 この記事を読むと、東北大学数学の難易度(月刊『大学への数学』誌のものも併記してあります)、どのように勉強すれば合格点を取れるか、どこまで解ければいいのか、を知ることができます。

 

東北大学医学部・理系入試における数学の重要性

 東北大学医学部医学科、二次試験前期の数学の配点は、600/1800です(面接除く)。見た目だけでも、配点の1/3を占めていますね。 
 さらに、数学は、大問が6つしかありません。他の受験生が解けている問題が、Focus Goldあたりに抜けがあることにより、白紙になり、0点だと、特に医学部あたりだと、その失点を他科目で取り返すのは、かなり厳しいと言えます。
 以上より、東北大学医学部・理系入試における数学の重要性がわかると思います。

 

東北大学数学、入試本番の心構え

 以下のことは、どこの大学の入試の数学でも、このような傾向があります。
 東北大学の数学は、当然、難しい出題もあります。年によりますが、最初から、全く方針が立たないこともあるでしょうし、完答できなそうな問題など、珍しくありません。
 そのような時に、解けなそうな問題をみて、戦意を喪失しないことです。人間は、そのような心持ちになるだけで、パフォーマンスが低下することが、大学の研究で明らかになっています。ちゃんと勉強した受験生の場合、解けなそうな問題を見たら「他の受験生も解けないな」と思って、軽く流し、解けそうな問題を確実に解く、部分点を取る、ということを心がければ、合格点を取れます。

 

2024年東北大学医学部・理系数学:難易度、どのくらい解ければ合格点か

 

 月刊『大学への数学』誌(東京書籍)では、難易度をA(易)~D(難)にレベル分けしています。Bが教科書の理解とチャート式、Focus Gold(啓林館)あたりの技法の組み合わせで完答でき、発想力といったものはいらない問題です。東大は成績を開示し、東大新聞はかつて合格者の平均点を調査していました。Bを完答、CもBレベルの部分点で合格者平均を超えます。
 現在、北海道大学医学部は、東大理Ⅰ、理Ⅱあたりより入りやすいと言えるので、Bを完答、CはBレベルの部分点、という戦略で、十分に合格点を超えることができます。

 第三者の評価も加え客観性を持たせるために、この評価も併記します。
 大学受験塾チーム番町では、普通の塾、予備校のように、入試問題の解き方を解説しても、あまり意味はないと考えます。どのように勉強すれば、大学入試の数学で合格点を取れるのか。それを、正解に必要な技法が、教科書、チャート式、Focus Gold(啓林館)に載っているか、という独自の観点から分析します。

 

第1問

『大学への数学』誌の難易度はA。
数2の微積分の問題です。

(1)
つまるところ、放物線と直線の交点、放物線の接線を求める問題です。すべきことは教科書レベルと言えるので、解けます。

(2)
放物線といくつかの直線で囲まれた面積を求める問題です。三角形の面積を使うと、計算がかなり楽になります。つまるところ、積分して面積を求めるだけなので、解けます。

(3)
(2)の面積が2/3になるときのaの値を求める問題です。そのような式を立てれば簡単に答が出るので、解けます。
完答しましょう。

 

第2問

『大学への数学』誌の難易度はB。

(1)
不等式の証明の問題です。
第一感は、(左辺)ー(右辺)をすることですよね。それと、問題文の条件をうまく使うと、証明できるので、正解できます。

(2)
「正の整数n」についての問題なので、整数問題と捉えることもできますし、数学的帰納法も選択肢に浮かぶでしょう。
整数問題で、最初のいくつかを具体的に試してみて、その後を帰納法で示す、という問題は、近年、旧帝国大学、一橋あたりで結構出題されていて、Focus Goldあたりにも少し載っているので、正解できます。

 

第3問

『大学への数学』誌の難易度はC。
確率漸化式の問題です。

(1)
まだ、最初の2回を具体的にやるだけと、簡単な2項間漸化式を立てるだけなので、解けます。

(2)
(1)の結論を使うと、意外に簡単に解ける形になるので、解けます。
ただし、Focus Goldあたりで漸化式に慣れておくことが大切だと思います。

(3)
これも(1)のの結論を使うと、意外に簡単に解ける形になるので、解けます。

(4)
話を進めると、問題文は、複素数の実部が0、虚軸上にあることと同値であることがわかります。ド・モアブルの定理を使います。このような問題は、Focus Goldあたりの複素数平面には載っているので、解けます。
難易度はCですが、解けそうなので、医学部志望者は完答を目指しても良かったでしょう。

 

第4問

『大学への数学』誌の難易度はC。
球面の問題です。

(1)
2点間の距離を求めるだけの教科書レベルの問題なので解けます。

(2)
2球が交わりを持つことは、教科書の2円の話と同じように考えれば示せます。
後半の、交わりの図形の円の中心と半径を求める問題は、三平方の定理とベクトルを駆使すれば、そう難しくないので、解けます。

(3)
本問は、xy平面と平面Hの両方に並行で、大きさ1のベクトルを求める問題です。教科書の空間ベクトルには、2ベクトルと垂直で大きさ◯のベクトルを求める問題が載っているので、同じように考えれば解けます。

(4)
本問は、言われればそれほど難しくありませんが、実戦的には大変だと思います。実戦的には(3)まで確保で、医学部でも合格点でしょう。

 

第5問

『大学への数学』誌の難易度はB。
数3の微分の問題です。

(1)
微分の計算をするだけなので解けます。

(2)
方程式の解がα≧2以上にただ1つ存在することを示す問題です。増減表を書いて、x軸とx≧2でただ1回交わることを言えばいいだけなので、解けます。まあ、難しくないと思いますが、教科書の中間値の定理は、1つのヒントになるでしょう。

(3)
グラフの概形を書く問題です。愚直に増減表を書いてグラフを書くだけなので、教科書、Focus Goldあたりの学習で書けます。

(4)
このような問題は、上の小問の結論を使うのではないか、と考えましょう。
上に出てくる2x-3と本問の2m-3、2n-3が似ていることに注目しましょう。また、本問は、Focus Goldあたりに載っている有名問題である、たとえば、eπとπeの大小を示す問題と同じような問題であることに気づきましょう。そうすると、同じように考えれば解けます。
完答しましょう。

 

第6問

『大学への数学』誌の難易度はD。
空間ベクトル、数3の極限、微積分の問題です。

(1)
線分PRの長さをθで表す問題です。
点PQRは同一直線上にあるので、k倍とでも置くのは、Focus Goldあたりでよく使う技法なのでいいと思います。
あとは、Rが平面H上にあることを使えばいいので、解けます。
本問は確保したいです。

(2)
不等式の証明の問題です。
与えられた不等式と図形を結びつけて考えれば、そこまで難しくないとも言えますが、実戦的には難しいかもしれません。

(3)
円錐の側面と曲線で囲まれた面積を求める問題です。
(2)の理解の上で、不等式の中辺を見ると、微分の定義の分子の形をしているので、それを使うと、理論上は解けますが、理解も計算も、なかなか大変で、完答は厳しいでしょう。難易度Dといっていいかと思います。

 

東北大学医学部・理系数学の勉強法と傾向と対策

 東北大学医学部・理系の数学は、大問6問、試験時間150分です。

 2024年は月刊『大学への数学』誌の難易度がABCCBDでした。難易度C、D問題を完答できる人は医学部合格者でも少ないので、B問題の完答、C問題のBレベルの部分点、という方針で、十分合格点を超えます。2024年は、医学部の場合、大問1,2,5は完答。3は完答に近い部分点。4は(3)まで。6は(1)を確保し(2)で部分点、といった方針で、十分に合格点を超えたかと思います。
 非医学部の人は、なおさら、かなりの余裕を持って、合格点を超えます。
 以上は、Focus Gold(非医学部なら黄チャートあたりでもいいでしょう)を網羅し、年度別『入試問題集』(数研出版)の*問題(頻出標準問題)や過去問をこなせば、十分達成できます。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

東北大学医学部・理系数学のオススメ参考書

 一番の基礎は教科書です。教科書には定義、問題以前の説明、基本問題が一番しっかり載っています。まずは、教科書を理解し、本文の問題(章末除く)を全問解けるようにしましょう。
 次に、Focus Goldの東北大学医学部・理系(非医学部の場合、黄チャートあたりでもいいでしょう)に重要な問題を全問解けるようにします。この時、指導者がいて、適切に問題を選んでくれるといいですね。ここまでで、進研記述模試、河合全統記述模試などの標準的な記述模試では、東北大学医学部・理系レベルの成績になっているはずです。

 直前期に何をすべきかは人によって違います。記述模試で成績が足りている人は年度別『入試問題集』(数研出版)の*問題(頻出標準問題)や過去問をこなすといいでしょう。過去問の場合、月刊『大学への数学』誌の難易度C問題は、平均的な医学部合格者も完答できていない場合が多いので、難易度に気を配りながら取り組むといいと思います。
 上記のような教材をきっちりこなしきれた場合、今までこなした教材で、忘れていてできなそうな問題に✓をつけ、ひたすら復習し、弱点をつぶすのがいいと思います。

 現役生で、間に合うか間に合わないかわからない場合、とにかく、復習してマスターすることを重視して、微積分、確率などの頻出分野から優先順位をつけて、Focus Gold、黄チャートや年度別『入試問題集』(数研出版)の*問題(頻出標準問題)をこなすといいでしょう。

 

 

2023年東北大学医学部・理系数学:難易度、どのくらい解ければ合格点か

 

第1問

『大学への数学』誌の難易度はA。
確率の問題です。

(1)
問題を把握して、普通に計算するだけなので解けます。

(2)
Aが勝つ場合を愚直に数え上げて、排反なので足せばいいので、解けます。
完答しましょう。

 

第2問

『大学への数学』誌の難易度はB。

(1)
3倍角を含む、三角方程式の問題です。
和積公式か3倍角の公式を使えば解ける形になるので、解けます。「正の実数のうち最小のもの」という、ほんの少しだけひねりが入っていますが、ほぼ同じ問題は、教科書準拠問題集あたりにも載っている可能性は高いと思います。

(2)
数3の極限の問題です。
まあ、このような極限は、はさみうちでいきます。
そして本問を進めると、ガウス記号が出てきます。ガウス記号を含む、はさみうちでいく極限の問題は、Focus Goldあたりには載っているので、解けます。
完答しましょう。

 

第3問

『大学への数学』誌の難易度はB。
数列の問題です。

(1)
漸化式を解く問題です。
この形の「両辺に何かをかけると2項間の関係が現れる」問題は、Focus Goldあたりには載っているので、解けます。

(2)
数列の和を求めるのがメインの問題と言えます。
途中、部分分数分解になりますが、教科書レベルなので、解けます。
完答しましょう。

 

第4問

『大学への数学』誌の難易度はB。

(1)
整式の割り算の問題です。
愚直に割り算をして、余りが0を示すのはいいと思います。
その時に、問題文の式を見て、Focus Goldあたりには載っている「字数下げ」の技法と同じ話を使おうと思うはずです。それで余り0を示せるので解けます。

(2)
方程式の虚数解で虚部が正のものを極形式で表す問題です。
問題文にも1の5乗根についてのヒントが書いてあります。また、(1)の整式に(x-1)をかけるとx5-1になるのは、Focus Goldあたりの複素数平面には載っており、この形は入試でも頻出です。
1の5乗根を求めるのは教科書レベルです。「虚部が正」の考察も、複素数の虚部の話はFocus Goldあたりには載っているので、その方針で解けます。

(3)
式の値を求める問題です。2023年の出題なので、2023乗が出てきます。
複素数平面の話を使うという特殊性はあると言え、複素数平面では普通の技法ですし、あとは、数1のFocus Goldあたりに載っているので解けます。
完答しましょう。

 

第5問

『大学への数学』誌の難易度はA。
ベクトルの問題です。

(1)
内積の定義と垂直なので内積0という教科書レベルと言える話なので、解けます。

(2)
本問のように、四面体の頂点から底面に垂線を下ろす問題は、Focus Goldあたりには載っているので解けます。

(3)
平行であることを示すのは、普通、実数倍と書けることを示します。これは教科書レベルです。
点Kも(2)同様、四面体の頂点から底面に下ろした垂線の足なので、位置ベクトルが求まります。したがって解けます。
完答しましょう。

 

第6問

『大学への数学』誌の難易度はC。
数3の微積分の問題です。

(1)
多少、簡単な条件はありますが、接線を求めるだけなので、教科書レベルと言え、解けます。

(2)
図形Sの概形を書くのは、微分して、増減表を書いて、グラフを書けばいいので、まあ、教科書レベルとも言え、行けると思います。
その後、面積を求めるのが、分析がやや難しく、計算が面倒なので、理論的には完答も可能なのですが、難易度Cなのだろうと思います。
(2)の図形Sの概形を書き、その後、どれだけ情報を答案に書いて、部分点を積み上げるか、が大切だったかと思います。

 

東北大学医学部・理系数学の勉強法と傾向と対策

 2023年は月刊『大学への数学』誌の難易度がABBBACでした。難易度C問題を完答できる人は医学部合格者でも少ないので、B問題の完答、C問題のBレベルの部分点、という方針で、十分合格点を超えます。2023年は、医学部の場合、時間との戦いはありますが、理論上は、大問1~5は完答。6は(2)の途中まで行けるような出題でした。ただ、それよりもポツポツ失点しても、十分合格点でしょう。
 非医学部の人は、なおさら、かなりの余裕を持って、合格点を超えます。
 以上は、Focus Gold(非医学部なら黄チャートあたりでもいいでしょう)を網羅し、年度別『入試問題集』(数研出版)の*問題(頻出標準問題)や過去問をこなせば、十分達成できます。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

この記事を書いた人

大学受験塾チーム番町代表。東大卒。
指導した塾生の進学先は、東大、京大、国立医学部など。
指導した塾生の大学卒業後の進路は、医師、国家公務員総合職(キャリア官僚)、研究者など。学会(日本解剖学会、セラミックス協会など)でアカデミックな賞を受賞した人も複数おります。
40人クラスの33位での入塾から、東大模試全国14位になった塾生もいました。

 

大学受験塾チーム番町 市ヶ谷駅66m 東大卒の塾長が個別指導

 

Twitter