東大数学 2019~

 

東大数学 2019~

 

2019年東京大学文系数学:年度別難易度、どのくらい解ければ合格点か

 

第1問

『大学への数学』4月号の難易度はB。
座標平面上の面積1/3の三角形の問題。
理系第2問を少し親切にした問題です。
(1)
文字が多いですが、そもそも「qとrをpで表」すことを要求している問題なので、問題文を読んで式を立てて文字を消去すればできるでしょう。
変域を絞り込む部分も、たとえば、チャート式や『Focus Gold』(啓林館)の二次関数には、似たような操作をする問題が載っています。
(2)
(1)さえできればあとは微分するだけです。
完答すべきです。

 

第2問

『大学への数学』4月号の難易度はB。
問題文にベクトルが出てきますが、ベクトルの技法はあまり使いません。
東大はセンター試験で問われるようなベクトルの問題(終点-始点で変形、直線○○上にあるから係数を足して1になる、ベクトルの大きさは2乗する、など)はほとんど出ませんね。
(1)
問題文の条件を淡々と教科書レベルの式にして、題意を把握して、積分して面積を求めれば出ます。
(2)
x軸正の部分と線分OPのなす角がθなので、放物線と原点を通る直線が接する直線の傾きの範囲の話に帰着されます。
完答すべきです。

 

第3問

正八角形の頂点を点Pが動く確率の問題。
正六角形あたりなら、チャート式やFocus Gold(啓林館)あたりにも載っています。
(1)も(2)も丁寧に場合分けすればできるでしょう。
完答すべきです。
大学受験の数学は、入試問題の丸覚えではなく、教科書の理解と『Focus Gold』(啓林館)などの問題集でマスターした技法を入試問題に対して臨機応変に使いこなすことが大切だと思われますが、確率は、問題の性質上、実際に入試レベルの問題に多く取り組む優先順位が高い分野だと思います。

 

第4問

問題文にはベクトルが出てきますが、第2問でも述べたように、東大はセンターで問われるようなベクトルの問題はほとんど出ません。
(1)
領域を図示する問題。
絶対値つきのこの領域は、他大でもよく出ます。
真面目にx,yの正負で場合分けをしてもそこまで大変ではありませんが、xに-xを代入しても同じ式なのでy軸対称、yに-yを代入しても同じ式なのでx軸対称なので、第一象限だけ調べればいいということは理解しておきたいです。
ベクトルが表す領域Eについては、点Pを固定して考える技法などはFocus Gold(啓林館)あたりにも載っています。
(2)
直感的にはわかりそうですが、論理的に示せるかというと、少し難しいかもしれません。

 

東京大学文系数学の傾向と対策と勉強法

 予備校さんの評価も、全体として、難化、変化なしと評価が別れ、個々の問題の難易度も評価が別れています。
 私見を述べますと、発想を必要とするような問題はほとんどないので、教科書を理解し、Focus Goldあたりの技法をマスターし、入試問題に慣れれば、時間が許せば70点/80点満点ほどは取れそうな出題だと思います。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。

 

 

2019年東京大学理系数学:年度別難易度、どのくらい解ければ合格点か

 

第1問

『大学への数学』4月号の難易度はB。
定積分をするだけの問題。

この形をx=tanθと置換するのは基本形は教科書に載っています。
その他の部分も、教科書に載っている技法で解決します。
定積分をするだけの問題は東大では珍しいですが、形は複雑でも基本を貫けばいいという、ある意味、東大らしい出題かもしれません。
完答すべきです。

 

第2問

『大学への数学』4月号の難易度はB。
正方形の中の面積1/3の三角形の問題。
文系第1問から誘導をなくした問題です。
勇気を持ってたくさん文字を導入できるか、文字を消去して1文字についての関数に帰着できるかが問題ですが、3文字使っても面積1/3の三角形が2つあるので式は2本立ち、1文字だけにできる、という見通しでしょうか。
なるべく完答したいです。

 

第3問

『大学への数学』4月号の難易度はC。
座標空間内の八面体の切り口の問題。
(1)

場合分けして切り口をxz平面に図示する問題。
このくらいはできるかな、と思いますが、意外に出来は悪かったようです。
(2)
切り口が八角形になるpの値の範囲の問題。
だいたいこのような問題は前の問題が誘導になっているのかな、と思えることが大切です。
やはり出来は悪かったようです。
(3)
さらに出来が悪かったようです。
できれば(2)くらいまでは正解したいところです。

 

第4問

『大学への数学』4月号の難易度はC。
整数問題です。
(1)
最大公約数を求めるので、素直にユークリッドの互除法を使うのは教科書レベルです。
最後nを含むので場合分けをするのはいいでしょう。
正解したいです。
(2)
平方数でないことを示す問題。
もともと整数問題は、なにかで割った余りで場合分けして考えるとうまくいくことがあり、Focus Goldあたりのに載っています。本文では(1)がヒントなので、偶奇で場合分けして考えます。
完答は難しかもしれませんが、なるべく部分点をもらいたいところです。
検討する価値は高い問題かと思います。
大学受験の数学は、入試問題の丸覚えではなく、教科書の理解と『Focus Gold』(啓林館)などの問題集でマスターした技法を入試問題に対して臨機応変に使いこなすことが大切だと思われますが、整数は、問題の性質上、実際に入試レベルの問題に多く取り組む優先順位が高い分野だと思います。

 

第5問

『大学への数学』4月号の難易度はC。
(1)

ただ一つの実数解を持つことを示す問題はFocus Gold(啓林館)などには載っています。
(2)
数Ⅲでこのような不等式を示す時に単調増加、減少を使う問題も、Focus Gold(啓林館)などには載っています。
(3)
数Ⅲでこのような極限を求める問題は、はさみうちを選択肢に入れましょう。
完答は厳しいかもしれませんが、なるべく多く部分点をもらいたいです。
(2)まで正解して(3)にどれだけ食いつくけるか、だと思います。

 

第6問

『大学への数学』4月号の難易度はC。
複素数平面の問題です。
最後の問題ということもあり、(1)から、かなり出来が悪かったようです。
(1)
実係数の4次方程式なので、解の実数、虚数のパターンは限られるので、力技で論証していけばいいですが、実戦的には難しいかもしれません。
(2)(3)
ただでさえ文字がたくさん登場する問題ですが、さらに、虚数解をp+qiなどと置く勇気があれば議論が進みそうです。
検討する価値はある問題だと思います。

 

東京大学理系数学の傾向と対策と勉強法

 第1問、第2問、第4問(1)、第5問(1)(2)を正解し、あとは部分点を集めるという方針で、合格者平均あたりに達すると思います。
 そのためには、教科書を理解し、チャート式や『Focus Gold』(啓林館)などで受験によく出る技法をマスターし、入試標準問題演習をすれば、大丈夫です。

 受験生の中には、予備校や参考書で、平均的な合格者も解けないような問題に取り組みつつも、『Focus Gold』(啓林館)あたりに抜けが多く、受験に成功しない人も多いので、注意しましょう。